Engine

From MoparWiki
Jump to: navigation, search




Automotive Engine, Internal Combustion Engine (ICE) and Petro Engine

Definition

An internal combustion engine (ICE) is a heat engine in which the combustion of a fuel occurs with an oxidizer (usually air) in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine, the expansion of the high-temperature and high-pressure gases produced by combustion applies direct force to some component of the engine. The force is applied typically to pistons, turbine blades, rotor or a nozzle. This force moves the component over a distance, transforming chemical energy into useful work.

The first commercially successful internal combustion engine was created by Étienne Lenoir around 1860 and the first modern internal combustion engine was created in 1876 by Nikolaus Otto (see Otto engine).

The term internal combustion engine usually refers to an engine in which combustion is intermittent, such as the more familiar four-stroke and two-stroke piston engines, along with variants, such as the six-stroke piston engine and the Wankel rotary engine. A second class of internal combustion engines use continuous combustion: gas turbines, jet engines and most rocket engines, each of which are internal combustion engines on the same principle as previously described. Firearms are also a form of internal combustion engine.

In contrast, in external combustion engines, such as steam or Stirling engines, energy is delivered to a working fluid not consisting of, mixed with, or contaminated by combustion products. Working fluids can be air, hot water, pressurized water or even liquid sodium, heated in a boiler. ICEs are usually powered by energy-dense fuels such as gasoline or diesel fuel, liquids derived from fossil fuels. While there are many stationary applications, most ICEs are used in mobile applications and are the dominant power supply for vehicles such as cars, aircraft, and boats.

Typically an ICE is fed with fossil fuels like natural gas or petroleum products such as gasoline, diesel fuel or fuel oil. There is a growing usage of renewable fuels like [[biodiesel] for CI (compression ignition) engines and bioethanol or methanol for SI (spark ignition) engines. Hydrogen is sometimes used, and can be obtained from either fossil fuels or renewable energy.

History

In the early years, steam engines and electric motors were tried, but with limited success. In the 20th century, the internal combustion (ic) engine became dominant. In 2020, the internal combustion engine remains the most widely used but a resurgence of electricity seems likely because of increasing concern about ic engine exhaust gas emissions.

As of 2020, the majority of the cars in the United States are gasoline powered. In the early 1900s, the internal combustion engines faced competition from steam and electric engines. The internal combustion engines of the time was powered by gasoline. Internal combustion engines function with the concept of a piston being pushed by the pressure of a certain explosion. This explosion is burning the hydrocarbon within the cylinder head an engine. Out of all the cars manufactured during the time, only around one fourth are actually considered internal combustion. Within the next couple of years, the internal combustion engine came out to become the most popular automotive engine. Sometime within the 19th century, Rudolf Diesel invented a new form of internal combustion power, using a concept of injecting liquid fuel into air heated solely by compression. This is the predecessor to the modern diesel engine used in automobiles, but more specifically, heavy duty vehicles such as semi-trucks.

Internal combustion engines

Petrol engines quickly became the choice of manufacturers and consumers alike. Despite the rough start, noisy and dirty engine, and the difficult gear shifting, new technologies such as the production line and the advancement of the engine allowed the standard production of the gas automobiles. This is the start, from the invention of the gas automobile in 1876, to the beginning of mass production in the 1890s. Henry Ford's Model T drove down the price of cars to a more affordable price. At the same time, Charles Kettering invented an electric starter, allowing the car to be more efficient than the mechanical starter. The abundance of fuel propelled gas automobiles to be the highly capable and affordable. The demand of gasoline rose from 3 billion barrels in 1919 to around 15 billion in 1929.

An internal combustion engine is a motor that is powered by the expansion of gas which is created by the combustion of hydrocarbon gases fuels. To elaborate, an internal combustion used the heat of a combustion created by the injected hydrocarbon fuel to create mechanical motion. At the time of the early 1900s, wood alcohol was a popular fuel for French and German automobiles, but as governments imposed large taxes on the production, the price of wood alcohol rose above that of gasoline. Gasoline engines became popular as a result of this, as internal combustion engines were commonly known as gasoline engines. Although gasoline engines became popular, they were not particularly desirable due to the dangers of fuel leaks that may cause explosions. Therefore, many inventors attempted to create a kerosene burning engine as a result. This was not a successful venture applying it for automotive usage. There are many different types of fuels for internal combustion engines. These include diesel, gasoline, and ethanol.

Also See

Mopar Engines

I-4

I-6

Flathead 6
Slant 6

V-6

I-8

Early V-8

Small Block

Poly
LA
Magnum

Gen 1 Hemi

Wedge Big Block

The Chrysler B and RB engines are a series of big-block V8 gasoline engines introduced in 1958 to replace the Chrysler FirePower (first generation Hemi) engines. The B and RB engines are often referred to as "wedge" engines because they use wedge-shaped combustion chambers; this differentiates them from Chrysler's 426 Hemi big block engines that are typically referred to as "Hemi" or "426 Hemi" due to their hemispherical shaped combustion chambers.

B-Engine
350
361
383
400
RB-Engine
383
413
413 Max Wedge
426
426 Max Wedge
440

2nd Generation Hemi

426

V-10


This Wiki is Under Construction, and can use your help!


Please take a moment to add any information you might have on this topic. It is through this type of Member collaboration that the MoparWiki will grow into being the Ultimate Mopar Infobase. The links contained in the Understanding Wikis box in the sidebar can help you get started.



Random Page | Longest Wikis | Oldest Wikis | Newest Images | Newest Wikis | List of Categories | List of Every Freakin Wiki



Register to Edit
It takes less than 5 minutes to request registration for editing, and we try to approve within 24 hours. Click the Register Link in the Top Bar.
MoparWiki Help
While editing Wikis may at first glance appear a little overwhelming, it really isn't. You will find this site's HELP (link found in the sidebar) to be very strong and easy to understand. The best way to start is with small edits and working on your user page -- and you will become a Pro in no time.

References


This Wiki requires References


The information in this wiki will have more creditability with some references to back it up